Showing posts with label nose cone. Show all posts
Showing posts with label nose cone. Show all posts

Wednesday, March 20, 2019

Built from Scratch - A Tale of Two Berthas - Part 3 (Nose Cone)


Click here for Part 1 of this series.
Click here for the most recent post in this series.

The Handbook of Model Rocketry by G. Harry Stine and Bill Stine briefly describes the process of turning a balsa wood nose cone from scratch, using a drill as a makeshift wood lathe. On page 47 of the Seventh Edition (the most recent), the authors write:

You can make your own special nose if you have an electric drill in your workshop. Drill a 1/4-inch hole in one end of a balsa block. Glue a 1/4-inch hardwood dowel into the block so that it protrudes about 1 inch. This gives you something to tighten into the chuck of the electric drill . . . When the glue dries so that the balsa block doesn't separate from the dowel as you start to spin it in the drill, insert the dowel into the chuck, turn on the drill motor, and carefully carve the balsa down to the desired nose shape using a file and very coarse sandpaper.

The Model Rocket News, Volume 7, Number 1, published by Estes Industries in December 1967, gives more explicit instructions on the process, including suggestions that you secure the drill to a work surface, draw a template to aid in shaping the nose cone the way you want it, cut away some of the excess balsa from the corners of the block, etc.


You can download a PDF that edition by clicking here.

You read these things, and if you're anything like me, you think That sounds pretty easy - but I bet it's not! Carving away just the right amount of balsa from a spinning piece with sandpaper sounds pretty simple, but I imagined it would be much harder than it sounded.

So, I went looking for a video tutorial. Surely, somebody, somewhere, had made a video on turning nose cones and uploaded it to YouTube. Probably several people, in fact.

But, try as I might, I was only able to find a short clip or two of a wooden nose cone in the middle of being turned, and on a wood lathe. The beginning of the process wasn't shown, neither was the end, and of course, the tools used were standard wood turning tools - chisels, and the like.

So, I'd have to try this just using the written instructions I had available. I thought of videotaping this process - to show how hard or easy it might be, depending on how it turned out - but I decided against it for a few reasons. First, I find when I try to videotape myself working on a rocket, even if it's something I'm pretty good at, I get a little distracted by the fact that I'm filming, and I tend to screw up. Also, since this would involve the use of a power tool, I didn't want that distraction to cause me to injure myself. Plus, it turned out that I'd have had a hard time finding a good place to put the camera and get a decent shot.

So here, in as much detail as I can give with photos and words, is how I turned this nose cone for the scratch-built Big Bertha.

A note on safety:

I am not an expert in using power tools. This post involves using a hand drill and a drill press for purposes they weren't intended for. While I never felt like I was at risk of hurting myself during this process, and I always felt like I had control over the tools I was using, I don't really know how safe or dangerous this is.

While this technique was first printed in a publication aimed mostly at children - remember, in the early days, this was largely a kids' hobby, marketed to and practiced by minors - it was also the 1960's! Things are certainly different than they once were - they used to sell chemistry sets with radioactive materials, for example, so it would seem certain standards have changed!

If you try this technique, you do so at your own risk. I cannot be responsible for you if you use a tool incorrectly or have an accident and hurt yourself. If you don't know how to use a drill or drill press safely, read the instructions, find a tutorial, or ask a friend who knows how. Consider joining a local makerspace if you need access to tools or help operating them safely. If you are a kid reading this, please don't do this without adult supervision!

Decide on the Shape and Create a Template


The first step is to decide what shape you want your nose cone to be, and to create a paper template you will use as a guide. Since I was building a Big Bertha, I didn't have to decide much, except for how long I wanted the nose cone to be. The Bertha cone is elliptical in shape, and I'd decided on 2.6 inches for the length (click here to see the previous post in this series, where I talk about questions of historical accuracy).

I don't have skills drawing or drafting, so I'd have to rely on rocket design software to do the work for me here. Luckily, when you create a design or simulation in OpenRocket, free model rocket design and simulation software, it will automatically generate a 2 dimensional template which you can print out in PDF form.


Shapes are rather limited when you use OpenRocket to create a nose cone template. If, for example, you were designing a rocket with an ogive nose cone, the template would end in a sharp point. This is partly because the mathematics used by rocket simulators to find the Center of Pressure (CP) in a model rocket make the simplifying assumption that nose cones come to a sharp point, even though in reality, most ogive nose cones are spherically blunted, meaning that the tip is rounded. That doesn't mean that you could't have a simulator which would enable you to create templates of different shapes, but which would make the same mathematical assumptions. OpenRocket could allow for spherically blunted shapes, I'm sure. And perhaps the developers will one day incorporate that feature into its design, but as of now that hasn't happened.

Still, with an elliptical cone, you don't encounter this problem. You still have a small range of shapes, but you can get a good looking Bertha cone just using OpenRocket's built-in template feature.

Next, cut out your template, as carefully as you can. You'll use this as a physical guide to check your work while turning the nose cone.


You can see that my cuts aren't perfect, as that's pretty tricky to do with either scissors or a hobby knife. But it's close enough for me to use.

Next, I traced the positive cutout from the template onto the balsa block.


This showed me what roughly what the finished 3-dimensional nose cone would look like. It didn't help that much, as the pencil marks would quickly be removed once I began turning. But it does help you visualize the cone and see how much excess you can cut off with a knife before you begin working.


Find the Center of the Balsa Block


You're going to drill down the center of the end of the balsa block and glue in a wooden dowel, to act as a spindle for the piece you're turning. It's best to find the center. I simply connected the corners with a pencil line drawn with a ruler, and that was good enough.

Even if you're slightly off, you'll be OK. Once you cut away the excess and start turning the nose cone, the dowel will end up becoming the exact center of the piece, because that's where the block will be rotating from. Still, try to get as close to the center as you can, or the block may wobble badly as you begin turning.

Choose dowel and drill bit to use. I picked a nice, thick dowel piece I found in my pile of odds and ends. It's probably best to pick the thickest dowel you can, as it will be sturdier when you turn the nose cone. At least a 1/4 inch thick is recommended.

I forget how thick this dowel was, but it was one of the thickest ones I had on hand which would fit into my drill chuck. I picked a drill bit the same diameter.


Drill into the center of the end of the balsa block. For this, I used my drill press. Drill to a good depth. On larger nose cones, you should drill deeper. I drilled till my press could go no further, and wished I could have drilled a little deeper into the balsa.


Try to drill straight down from the top. If you don't have a drill press, again, it will still be OK if you are slightly off. Once you begin turning, the dowel will become the exact center of the piece. But it's best not to start off with a wobbly, off-center block.

Glue In the Dowel Spindle


Glue the dowel into place, as deep as it will go. I would definitely use a carpenter's yellow wood glue for this. Pour some into the hole, press the dowel firmly into place, and let it dry a full 24 hours before proceeding to the next step.

Cut Away the Excess Balsa


If the block is too long, trim it down to just a bit beyond the tracing. Then, with a knife, trim away the corners a bit, so you have less to remove while turning the piece.

Put the block in the drill you're planning on using, tighten the chuck firmly, and give it a test spin.


Now, you're ready to shape the nose cone!

Turning and Shaping

I don't have any photos from the beginning of the process here, when I was starting to take material off the corners of the block. Since I started right in without making a video, I just forged ahead without stopping to take pictures every few minutes. But I can tell you that it was slow going at first.

I didn't have my hand drill secured to a base. I just held it in my left hand, and held the sanding block in my right. My sanding block was my only a shaping tool, and the coarsest sand paper I had on there was 150 grit - not terribly coarse. The beginning of the process was a lot of shaking as the sanding block bounced off of rough-hewn corners without taking much material off with each pass. I would have done better to have a much coarser sandpaper on the block - or better, to have started out with a rasp file or something similar, to shave away lots of material at the beginning, until I got a cylindrical block of wood.

And I soon realized that my hand drill was not up to the task. The chuck kept coming loose, making the piece wobble as it turned, and nearly fall out.

It seemed dangerous, and not very effective, so I switched to my drill press, which I could tighten down nice and hard. The balsa block stayed nice and steady.

Eventually, I got a nice cylinder, and then began to round the end.


After more narrowing and shaping, the block got closer to the diameter I wanted, and the tip got more rounded.


Once the block got close to the diameter of a BT-60, about 1.637 inches, I started forming the shoulder that would fit inside the rocket body tube. Since I was really into this project, I neglected to take a photo, but I started by measuring where I wanted the shoulder to start and touched a pencil to that spot as I turned the block. This left a nice black line as a reference point.

Then, I did as the old Estes instructions suggested, and used an emery board to form the shoulder. It's got a coarse side and straight edges, but its flexibility help ensure you don't sand too much off too quickly.


As the shoulder gets closer and closer to the final diameter, it's important to constantly measure and check your progress. If you make it too narrow, it might be too loose in the rocket. If it ends up a little bit loose, you can always wrap a bit of masking tape around it, but don't go too far!


Cut a ring of scrap body tube to check for the final shoulder diameter. Take the nose cone out of the chuck and try to put the body tube scrap on it, and when it just fits, slip it onto the shoulder of the nose cone and leave it there. This scrap will be your reference for the base diameter of the nose cone itself. You'll sand until the body tube and the base of the nose cone are the same.



After much work, the nose cone got closer and closer to the final shape. Here, it started looking pretty good. The base diameter was just where I wanted it, and I started working on shaping and shortening the rest of the cone.


I damaged the template and ended up cutting it in just over half. This might be easier to use anyway, rather than the full elliptical template.

Here, it's just a bit too long for the shape I wanted. It might, actually, be pretty close to the original Bertha nose cone, which, as we've mentioned before, was about 3.1 inches long. I could have stopped here, but I decided I wanted to finish this process.


Finally, I decided I was done. The cone was nicely shaped and the right length of 2.6 inches long.


I compared my work against the positive cutout from the template. Since the template is flat against the cutting mat in this photo, it looks smaller, but the nose cone and template are in fact, the same size. I couldn't believe it, but my first hand-turned nose cone came out nearly perfect.


Here's the balsa cone next to a re-claimed plastic Bertha kit nose cone, which will come up in this series in a later post.


The handmade cone is slightly longer - 2.6 inches vs. the 2.5 inch plastic cone. Still, they look... well, almost identical. I was really pleased how this turned out.

So, it turns out this is doable, even if you've never done it before. It makes a lot of dust. Some shapes might be harder to get just right than others. The key is to go slowly and don't try to work too fast.

Oh, and be careful.

Follow me on Twitter.

Like my Facebook page for blog updates and extra stuff.

Have a question you'd like to see addressed on this blog? Email me at iamtherocketn00b@gmail.com. 

Thursday, November 15, 2018

Built from Scratch - A Tale of Two Berthas - Part 1


I recently finished building two Big Bertha rockets - from scratch, rather than from kits. As a guide, I used the original plans, published by Estes in Model Rocket News in 1963, when Bertha was a free plan, before it was sold as a kit (the Big Bertha is now the longest continually produced model rocket kit in history).

I meant to build just one scratch Bertha, but ended up building two of them, almost by accident. I do this a lot.

I started this project for a few reasons. My original Big Bertha kit was one of my earliest builds, detailed a few years ago on this blog. I mention the Bertha a lot here, not because it's always been my favorite model rocket (it hasn't), but because it's so iconic, and simple, and with its large parts, it makes a good demo rocket.


But last season, I flew my now beat up Bertha for my final flight of the fall on a C6-3 motor. Our Launch Control Officer, Kenn, commented "There's no better combination of rocket and motor, folks!" and I thought, you know what, he's right. That is a great rocket!

The Bertha is such a pleasure to see fly. I always brought it to a launch as a kind of afterthought, thinking I should take something that doesn't fly too high, just in case. But each time I flew it, it was just... fun! It goes up relatively high, but you can still keep your eye on it, and it floats gently back down on its 18 inch parachute, and... Well, I guess I just have a soft spot for the Bertha. So, I wanted another one.


That was reason 1. Reason 2 is that, while it does fly really well on C motors, I've always wanted to put a D12 in it, but I built the Bertha kit before I knew you could upgrade these things. The Berthas I've seen fly on D12-5 black powder motors are really fun. With its large fins, the Bertha is plenty stable, and can handle extra weight at the back. So, I decided to build a Bertha with a 24mm diameter motor mount, for those Estes D12 motors.

Reason number 3 is that I always wanted to build one of the plans from the old Estes Model Rocket News. Back in the 1960s, many of these early newsletters featured rockets either designed by Vern Estes himself, or by readers of the Model Rocket News, who'd send in their own designs, which used Estes stock parts. In those days, it was pretty common for model rocketeers to have a fleet which was at least in part built from scratch, rather than from kits.

I figured the Bertha would be a good place to start. No odd, out-of-production tube sizes or nose cones to buy. Just a BT-60 tube, some 1/8 inch fin stock, and a stubby elliptical nose cone. Speaking of which...

Reason 4: I had always wanted to try turning my own nose cone from a block of balsa.


 The plan was to see how hard this could be, using a hand drill as a kind of lathe. From what I'd read in both the Model Rocket News and the Handbook of Model Rocketry, this was supposedly not only doable, but not all that difficult. I wasn't sure that was true, but I wanted to try my hand at it.


It's been a while since I've done this kind of Rocket N00b stuff where I try to figure out how something is supposed to be done and then publish it here. I thought this would be a good place to start, and it would save me having to buy a cone. I wanted to keep this Bertha cheap, if I could.

Spoiler alert - it turned out pretty nice!
So, despite my promise to myself to finish building everything I'd been working on for a year and a half before starting any new rocket builds, I began working on the Bertha. Then I ended up making a second one. More on that when we get to it.

The next few posts will detail my scratch build of the two Berthas.

Click here for Part 2 - The Plans

Follow me on Twitter.

Like my Facebook page for blog updates and extra stuff.

Have a question you'd like to see addressed on this blog? Email me at iamtherocketn00b@gmail.com.

Saturday, September 5, 2015

Fiddling Around

My schedule is all over the place. Sometimes I work late at night; sometimes early, early in the morning. All this back and forth has left me with less time than I'd like for rocket building or blogging. I get maybe two good building days a week, and I work slowly.

Fortunately, I have OpenRocket - free rocket design and simulation software.


As any gamer or couch potato can tell you, even if you're really tired, you can still spend hours fiddling around on your computer.

So, when I don't have the time or energy to build rockets or write about them, I play around with different designs. It's a way of staying an active rocketeer when I'm too busy to be actually building.

Once you know the basic principles of stability and rocket construction, it isn't that hard to design a basic rocket - or at least to get one started. You might need to make revisions, weigh components and change a few things, but you can come up with some cool basic designs in short order. I've even built and flown rockets that took me 20 minutes to conceive, and I only had to make minimal revisions.

Here are some designs I've been working on.

The Circe Series

I started this the other night. I wanted something simple to replace my lost Estes Hi Flier - a small, lightweight, high-flying rocket. It performs so well because it's a minimum diameter rocket - meaning it is only as big around as it needs to be to hold the motor. It has no motor mount - the body tube is the motor mount!
Circe A - a small rocket which will hold a standard 18mm diameter (A-C) motor, and go quite high
Though I am trying to build bigger and bigger rockets (and currently building two of my Estes Pro Series II rockets), I just had the urge to design this little thing.

OpenRocket has a scale function, so you can take a rocket of a particular size and scale everything up or down by the same amount. So while Circe A (pictured above) will only take a C sized motor, Circe B looks exactly the same, but is larger and will take a D or C motor. When you scale things up in OpenRocket, sometimes you have to adjust components, because, for example, the mass of the nose cone might actually end up being much greater than the part you actually have on hand. Other than that, it's pretty simple.

I went up to a BT60 sized rocket with the Circe series before going to bed. BT60 is a 1.637 inch diameter tube, and is the same size as the Big Bertha. The cool thing about the BT60 is that it's just the right size to fit a cluster of 3 standard motors.

Circe C2 - looks much the same, but has a cluster of 3 motors. You'll notice the nose cone is slightly shorter - this is due
to the size of nose cones I have on hand, which are a of slightly different ratio than the BT20 nose cones I have.
If you're an advanced rocketeer and are good at making stuff from scratch, you can make your own parts. All of them - even the body tubes. And, of course, nose cones.

I'm not to that level yet. I don't have access to a wood lathe, and I haven't picked up the skill of designing and making a custom-shaped nose cone. Fortunately, there are a lot of good parts on the market.

So what I do, for now, is look at the parts that are available - either in my parts box, or online, and design around that.

Here's a lovely balsa wood nose cone I picked up from JonRocket months ago.


This shape is a spherically blunted tangent ogive, and the nose cone fits a BT70 tube, which is about 2.2 inches in diameter. This is getting toward the higher end of body tube size you'll find for low power model rockets, and into the mid power range. If you're new to model rockets, this thing will look huge to you - there are not many BT70 kits out there!

I have realized I need to get more of these, or get some other BT70 nose cones, because over the months, I've designed a number of rockets around this very nose cone.

One of the first was called Horus.

The Horus Series

People give rockets all kinds of zany names. A quick look at an Estes catalog gives you some idea - Sizzler, Prospector, HiJinks, etc. A rocket can have any kind of name. But I guess I'm more of a classical kind of guy. I like to name my rockets after Greek, Roman, or sometimes Egyptian gods or mythological characters, or after celestial bodies. Horus is the falcon-headed Egyptian god of the sun.


Seemed like an appropriate name for a rocket.

I wanted to design my own rocket which looked vaguely like the Sirius Rocketry Eradicator - a beautiful rocket which has been on my wish list since I first saw it - but would be simpler to design and construct for a n00b.

The Eradicator, from Sirius Rocketry, available here
(Eradicator - there's an interesting one. I love this rocket, but the name reminds me of this Kids In the Hall sketch)


No offense, Sirius Rocketry - you guys are awesome!

Anyway, I love the two differentiated diameters of the airframe on the Eradicator. I designed this one:


Not too bad, I thought. But in order to get a minimum of 1 caliber stability, I needed to have 5 fins, if they were to be swept forward. I was able to decrease the number of fins to four by adding fin vanes.


This increases the surface area of the fins, moving the center of pressure aftward, without making the fin span inordinately wide.

The Eradicator has a lot of great detail - it looks like a real launch vehicle. That level of design was a bit advanced for me. That's not to say you can't add additional detail to the build, but it's tricky to add it to the OpenRocket design.

FMLV


This is a simple recent design, but one I like and am building now. It's another BT70 design with a 24mm motor mount. Like the Circe rocket, it's got swept back fins, but as you'll notice, the tips are not parallel to the rocket.
I've seen a few designs like this recently, and I like the look of it. Actually, a lot of classic kits have fins like this, but I've only just recently thought of changing the shape of the fins in OpenRocket.

You can select a few basic fin shapes in OpenRocket. I almost always opt for "trapezoidal," and then simply change the dimensions of the root chord, tip chord (chord is the distance from the leading edge to the trailing edge) and height (the distance from the airframe to the tip of the fin).

That means that most of my designs look like this:

Imperius, formerly known as the "Donor's Rocket"

See how the tips of the fins are parallel to the rocket body tube? Nothing wrong with that, of course.

But part of what gives a rocket its character is the shape of the fins. I went with a few designs that had the fins swept forward, like the Horus series above, and the Copperhead (formerly known as "Keith's Rocket").


And I like these designs. But you learn by playing with the tools you have, so I decided to try a different shape. Still simple enough to cut with a ruler and hobby knife, but a little different from what I'd made before.

FMLV stands for First Massachusetts Launch Vehicle, because it's the first scratch design rocket I'm building here in Boston. I'm using a 24mm Estes "quick release" screw-on motor retainer so that I can use my newly-acquired AeroTech 24mm reloadable casing, or an Estes black powder D or E motor.


That gives me a lot of motor options.

It will also be the first rocket I build from scratch which will have through the wall or TTW fin construction. This means that the fins have tabs at the base which will go through slots in the airframe and attach directly to the motor tube. You fins this as pretty standard in mid power and high power kits, and even some Estes low power kits, like the Cosmic Explorer.

Attaching fins to the Cosmic Explorer. In this kit, the slots are already cut for you.
Of course, in a kit, the slots are cut for you. For the FMLV, I'll have to cut my own fin slots for the first time.


BT80 Rockets

Also included in my parts box is a BT80 sized parabolic nose cone.


You may have noticed that this nose cone has a similar profile to the Big Bertha nose cone, but while the Bertha uses a BT60 body tube - 1.637 inches in diameter, the BT80 is 2.6 inches in diameter. For a beginning model rocketeer, that's really big!

Regular readers of the blog may also recognize this nose cone as part of the ICU2 camera payload bay from Make: Rockets: Down-to-Earth Rocket Science by Mike Westerfield, which I used in the design of the Janus II two-stage rocket.

Since I had another one, I played around a little with a few designs.

A really large rocket, called Titus, after my girlfriend's nephew.

Meh... This kid needs to have a cooler looking rocket named after him.

Also played around with a large two-stage rocket.

Could be fun, especially with the two large 24mm diameter motors. But still a little inelegant. It was probably late at night when I did this one.

I might make a larger, not-quite-proportional version of the Copperhead rocket pictured above.

A larger Copperhead design with the BT80 nose cone, and a 29mm motor mount, for E, F or G motors
Of course, the Janus II with its payload bay was lost on first flight, so I may just rebuild that...

Finally, a design I nearly forgot about. This must have been months ago.

Arrowhead

I had this idea when building both Sounder I, a tiny minimum diameter rocket I lost on its first flight, and the Ceres B booster, again from Mike Westerfield's book.

I stacked one on top of the other with a balsa transition I had in the parts box.

 
It reminded me of some of these:


This looks like a two-stage sounding rocket, but it's really just one stage. Not that you couldn't do a two-stager here, but it would require some electronics I haven't worked with just yet.

I haven't discussed staging on the blog yet, but in brief, most model rockets with multiple stages rely on the first motor igniting the second. The first motor has no delay grain or ejection charge, or even clay cap.


From Apogee Components
The propellant is exposed at the forward end of the motor, so when it burns up, hot particles shoot forward into the nozzle of the second motor, igniting the second stage propellant.

An illustration of model rocket motor staging
from the Estes Model Rocketry Technical Manual
Many multi-stage rockets have the motors touching each other. This is known as contact staging. There can be a gap between them, in what is known as gap staging, but the gap can only be so wide - 12 inches is probably the maximum.

This rocket is longer than that, and the two parts are separated by a solid balsa transition, so there would be no way for the hot propellant particles to reach the top portion. You can make hollow paper transitions, but I'm not very good at that yet, and balsa transitions of all sizes are available online.

Again, for a beginning designer, working around available components is the easiest way to get started.

High power rocketeers do multi-stage rockets using altimeters, or sometimes timers, to electronically ignite upper stages in the air. This is known as an air start.

Still, even as a one-stager, I like it.

Like my Facebook page for blog updates.